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A Semidiscrete Model for Water and Solute Movement in Tile-Drained Soils
1. Governing Equations and Solution

S. K. KaMRA,! SitA RaM SiNGH,23 K. V. G. K. Rao,! AND M. TH. VAN GENUCHTEN#

A finite element model has been developed to simulate solute transport in tile-drained soil-aquifer
systems. Water flow in the unsaturated zone and to drains in the saturated zone was assumed to be at
steady state. The model considers the transport of nonreactive solutes, as well as of reactive solutes
whose behavior can be described by a distribution coefficient. The exact-in-time numerical solution
yields explicit expressions for the concentration field at any future point in time without having to
compute concentrations at intermediate times. The semidiscrete method involves the determination of
an eigensystem of eigenvalues and eigenvectors of the coefficient matrix. The eigensystem may be
complex (i.e., it may have imaginary components) due to asymmetry created by the convection term
in the governing convection-dispersion equation. The proposed approach facilitates long-term predic-
tions of concentrations in drainage effluents and of salt distributions in soil and groundwater. The
accuracy of the model was verified by comparing model results with those based on an analytical
solution for two-dimensional solute transport in groundwater.

INTRODUCTION

In arid areas, more irrigation water than is required for
evapotranspiration must be added to the soil to avoid the
accumulation of salts in the root zone. This excess irrigation
water creates a downward flux of water and salts from the
root zone to the underlying groundwater system, thus cre-
ating a potential for future groundwater salinization. A
common method for avoiding groundwater salinization is to
install a subsurface drainage system below the root zone to
collect and remove drainage water and its dissolved constit-
uents. The safe disposal of saline drainage water can pose
serious environmental and economic challenges, as illus-
trated by as yet unresolved drainage water disposal prob-
lems in California, several parts of India, and many other
arid and semiarid regions of the world [Suarez, 1989; Tanji,
1990; Boumans et al., 1988]. Considering the potentially
devastating consequences of the salinization of soil and
water supplies in irrigated agriculture, the long-term effects
of modern agricultural practices on groundwater quality
must be evaluated. Predicting the long-term consequences of
often short-term decisions regarding irrigation and drainage
management in salt-affected areas is essential for the safe
operation of irrigation projects and can best be achieved with
the help of conceptually based simulation models.

A variety of numerical models involving finite difference
or finite element techniques have been developed for simu-
lating saturated-unsaturated water flow [Freeze, 1971; Tod-
sen, 1973; Neuman, 1973; Tang and Skaggs, 1977; Skaggs,
1978} and solute transport [Duguid and Reeves, 1976; Pick-
ens et al., 1979; Freeze and Cherry, 1979; Yeh and Ward,
1981]. Of these the water flow models of Tang and Skaggs
[1977] and Skaggs [1978] and the solute transport model of
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Pickens et al. [1979] are directly applicable to subsurface
drainage systems. Recently, Nour el-Din et al. [1987a, b]
presented a comprehensive salinity management model for
simulating salt accumulation and transport in irrigated crop-
lands, including salt loadings of drainage effluents. While
theoretically sound, the input data requirements appear
prohibitive for application of the model on a routine basis.
Also, simulations were made for time durations of the order
of only one growing season.

Standard finite difference and finite element techniques
transform the governing partial differential equations into a
finite number of approximate algebraic equations. Discreti-
zation of the time and spatial derivatives leads to solution
matrix equations which are solved sequentially for each time
step to obtain the hydraulic head or concentration distribu-
tions at future times. Alternatively, it is also possible to use
a semidiscrete approach which discretizes only the space
domain but uses an exact-in-time analytical solution of the
system of ordinary differential equations to advance in time.
This alternative approach yields explicit expressions for the
concentration or the hydraulic head at each nodal point as a
function of time. The semidiscrete method requires less
computer time and often yields smaller truncation errors for
long-term predictions as compared to the standard numerical
approach. The method entails first the calculation of an
eigensystem (involving eigenvalues and eigenvectors) for the
coefficient matrix resulting from the spatial discretization.
Time integration subsequently leads to an exponential ma-
trix equation. For solute transport, the eigensystem may be
complex (i.e., it may have imaginary components) due to
asymmetry created by the convection term in the governing
solute transport equation.

Guymon [1970] applied the semidiscrete approach to the
one-dimensional transport equation. By using a finite ele-
ment method based on an equivalent variational approach
and a special transformation, the matrix to be exponentiated
was made symmetric, resulting in a real eigensystem. The
approach was extended to the two-dimensional solute trans-
port equation without mixed partial derivatives [Guymon et
al., 1970] and later also to a transport equation with mixed
partial derivatives [Nalluswami et al., 1972). Kuiper [1973]
and Sahuquillo {1983] successfully applied the semidiscrete
technique to the solution of groundwater flow problems.
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Fig. 1. Schematic of the flow domain for solute transport in a
two-layered tile-drained soil-aquifer system. For a homogeneous
aquifer, K| = K, or A = D.

Hwang et al. [1984] subsequently used the method for a
two-dimensional solute transport problem with transient
boundary conditions and variable source loads. They solved
the eigensystem using complex arithmetic, which made it
possible to decouple concentrations at different spatial grid
nodes and to solve for these concentrations separately. More
recently, Umari and Gorelick [1986] presented an algorithm
that uses real arithmetic to convert a complex eigensystem
into an equivalent real eigensystem.

To our knowledge, the semidiscrete method has not yet
been applied to transport in the unsaturated zone. In this
paper we will use the approach with real arithmetic to obtain
an exact-in-time numerical solution of a two-dimensional
finite element model for solute transport in a tile-drained
soil-aquifer system. The model considers steady state water
flow in the unsaturated and saturated zones and includes the
effects of convective transport, dispersion, and linear equi-
librium reactions between the solute and the porous medium
(characterized by a distribution coefficient) on solute trans-
port. This part 1 presents the development of the model, its
numerical solution, and comparisons with a two-dimensional
analytical solution for solute transport in a groundwater
aquifer. Part 2 [Kamra et al., this issue] presents a field
validation of the composite unsaturated-saturated solute
transport model for a tile-drained soil, as well as a detailed
sensitivity analysis of several model parameters.

WATER FLOW IN A TILE-DRAINED
SOIL-AQUIFER SYSTEM

Figure 1 schematically shows the movement of water and
dissolved solutes to parallel drains in a tile-drained soil-
aquifer system. The horizontal spatial coordinate x is taken
to be positive toward the right, whereas y is positive
downward. Infiltrating rain and irrigation water is assumed
to flow vertically downward through the unsaturated soil
profile before reaching the arch-shaped steady state ground-

water table, DE. After reaching the water table, water and
dissolved salts move two-dimensionally toward the parallel
drains.

Wierenga [1977] and Beese and Wierenga [198(] have
shown that relatively simple transport models based on
steady state water flow can produce solute concentration
distributions that are comparable to those obtained with
transient water flow models, but with considerably less input
data than the transient models. Steady state formulations
can be particularly useful for making long-term predictions
by ignoring the often highly dynamic but short-term oscilla-
tions in water content and solute concentration near the soil
surface. Since the objective of this study was to make
long-term predictions of salt transport in a tile-drained
soil-aquifer system, and since the mathematical description
of the problem could be simplified dramatically, we decided
to implement steady state water flow models for both the
unsaturated and saturated zones.

Unsaturated Zone

The steady state pressure head distribution during vertical
water flow to or from a water table can be derived from
Darcy’s law as [e.g., Raats and Gardner, 1974]

h -1
Z(/’l)=J;) mdh (1)

where K is the unsaturated hydraulic conductivity (LT ') as
a function of the pressure head h(L), z is distance (L) above
the water table (positive upward), and q is the fluid flux or
specific discharge (LT ™!). If the water retention #(h) and
hydraulic conductivity K(A4) curves of the soil are available,
(1) may be integrated numerically to determine the water
content 6 at any point z above the water table in a soil profile
during steady upward (+g) or downward (—g) water flow.
The functional forms of the unsaturated hydraulic properties
used in this study were those of van Genuchten [1978):

s— 0,
6(h)=0,+(1—;—'w (0,50505) )
K(6) = K,S[1 - (1 = skmmp? )
Se = (0 - Hr)/(os - Or) (4)

where 6, and @, are the residual and saturated water
contents, respectively, « and n are empirical shape param-
eters to be estimated by fitting (2) to experimental retention
data, m = 1 — 1/n, K, is the saturated hydraulic conduc-
tivity, and §, is effective fluid saturation (0 < §, < 1).

Saturated Zone

The mathematical analyses of Kirkham [1958] and Tokséz
and Kirkham {1971] were used to describe the steady two-
dimensional flow of water to drains in homogeneous and
two-layered aquifers, respectively. For homogeneous aqui-
fers, approximate analytical solutions of the Laplace equa-
tion give the height z of the water table above the drain axis,
as well as the hydraulic head ¢ distribution in the flow
domain ABCDFA below the drain axis (Figure 1). Similarly,
analytical solutions for the two-layered aquifer give the
height of water table z above the drain axis and the hydraulic
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head distributions ¢;(x, y) and ¢,(x, y) in the two horizon-
tal layers composing the flow domain ABCDFA. Both anal-
yses consider the flow of water in the arch-shaped saturated
region above the drain axis to be vertically downward. The
drain tube in each case was replaced by a strip sink -of zero
thickness and width a in the x direction. Solutions are
directly applicable to the other half of the domain between
the two drains because of symmetry.

The steady water table configuration, which is obtained
from the computed z(x) values at various points along the
drain axis (0 = x = §), serves as a reference level for
computing the volumetric water content at any point in the
unsaturated zone by means of (1) and the adopted relation-
ship for the soil water retention curve 6(h). From the
hydraulic head distributions in the saturated zone the hy-
draulic gradients d¢/dx and 8¢/dy for the homogeneous
aquifer and the gradients d¢,/0x, d¢,/dy, d¢,/éx, and
d¢,/dy for the two-layered aquifer could be evaluated. The
components g, and g, of the specific discharge g in the x
and y directions, respectively, were subsequently computed
for the region (0 < x < §, 0 = y = D) with the help of
Darcy’s law [Kamra, 1989].

Final expressions for the height of the water table z(x)
above the drain axis and the components g, and g, of the
specific discharge for the homogeneous and two-layered
aquifers are given below.

Homogeneous aquifer.

2RS
K,m(1 — RIK,)

sin (mwx/28)
sin (7r/2S)

z(x) =

[cos (mmrlS) — cos (mmx/S)]

o
+ 2
m=

3|~

* [coth (m#wD/S) — 1] (5)

R sin (7x/S)/2
cosh (7y/S) — cos (mx/S)
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=, cosh (mmy/S
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smh (m#wDIS)
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. sinh (mwD/S)

m

where x and y are the horizontal and vertical coordinates
(being positive toward the right and vertically downward,
respectively), r is the radius of the drain, 2§ is the drain
spacing, K is the saturated hydraulic conductivity of the
aquifer, R is the steady rainfall or recharge rate (equal to g in
the unsaturated zone), and D is the depth of the impervious
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layer below the drain axis. The origin of the coordinate
system is at the center of the drain. For the strip sink (the tile
drain), g, = 0 and g, = RS/a. In this study, a was taken
equal to one fourth of the circumference of the tile andits
envelope.

Layered aquifer. The geometry of the parallel tile drain-
age system in a layered aquifer is the same as for a
homogeneous aquifer, except that the flow region now
consists of two layers. The hydraulic conductivity of the
upper layer is K, and that of the lower one is K,. Both
layers are assumed to be homogeneous and isotropic. The
upper layer extends to a distance A below the drain axis, and
the lower one terminates at an impermeable layer located at
a finite distance D below the drain axis (Figure 1). Results
for the two-layered aquifer are

2RS >
D e— B —
0= ARk, | B0 E

1
m
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/S) coth AlS)-B, ————————
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(8)
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K
B,, = {m sinh (m'rrA/S){K—l coth [m7(D — A)/S]
2
-1
+ coth (mvrA/S)} (14)
Co = (K,/K)B, (15)
K,
C,, = {m sinh (mfrA/S){;(— + tanh [m#@ (D — A)/S]
2
-1
- coth (mwA/S)] (16)

and where the subscripts 1 and 2 correspond to the upper
and lower layers, respectively.

SOLUTE TRANSPORT IN A TILE-DRAINED
SOIL-AQUIFER SYSTEM

Consider the governing equation for two-dimensional sol-
ute transport in unsaturated-saturated porous media during
steady state water flow [Kamra, 1989]:

oR dc 0 oD ac oD dc

—_—— —4 —_—
Tar  ax \77 ™ ax ™ 3y

d oD ac oD ac

+— — 4 —

ay I ax 7 3y

d(gc) a(gyc)
ox ay

+®(x,y, 1) (17
in which c is the dissolved solute concentration (ML ~3), R 0
is the retardation factor, 8 is the volumetric water content
(equal to the porosity in the saturated zone) (L>L~%); D,
D,,, Dy,, and D,, are the components of the dispersion
coefficient tensor (L’T7'), g, and g, are the Darcian
specific discharge components (LT '), and ®(x, y, 1) is a
source or sink term, being positive for sources and negative
for sinks (ML ™>T~'). The retardation factor Ry in (17)
accounts for linear equilibrium interactions between the
solute and the porous medium and is given by Ry = 1 +
pK 4/8 where p is the bulk density of the medium (ML ~3)
and K ; a solute distribution coefficient (LM ~1).

The dispersion coefficients for a two-dimensional isotropic
porous medium were given by Scheidegger [1961] as

D, = D(q}/q") + Dr(allq?) (18)
D,, = Dyq}/q*) + Dy (allq?) (19)
D,, =Dy, = (D~ D1)(4:a,/9") (20)
in which
Dy=arq/8 (1)
Dr=arql (22)

where a; and ay are the longitudinal and transverse disper-
sivities (L), respectively.
Let L denote the operator on ¢ such that (17) becomes
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Lic) + P(x,y,6)=0 (23)

The finite element method assumes that the concentration
distribution ¢(x, y, ) can be approximated by a trial
solution of the form

NN
é(x, y, )= 2>, C{ON{(x, y)

i=1

(24)

in which C;(r) is a finite set of unknown time-dependent
coefficients representing concentrations at the nodes in the
solution domain, N;(x, y) are the interpolation (or basis)
functions, and NN is the total number of nodal points in the
flow domain. Substituting (24) in (23) results in a residual
equal to L(¢) + ®(x, y, t). The Galerkin finite element
method requires this residual to be orthogonal to each of the
basis functions, that is,

(L&) + D(x, y, D], Ni(x, y)) =0 (25)

i=1,2,...,NN

Integrals in (25) are evaluated using Green’s theorem (see
Pinder and Gray [1977] or Kamra [1989] for details). The
procedure results in a matrix differential equation of the
following form:

[AMH{dC/dt} = [DM){C} + {F} (26)

where [AM] is a NN x NN symmetric coefficient matrix,
[DM] is an NN x NN nonsymmetric matrix involving the
convection and dispersion parameters, {F} is a NN X 1
force vector representing the contributions from solute
sources, sinks, and boundary conditions imposed on the
transport equation, and {C} is a NN X 1 vector of nodal
concentrations. Typical elements of these matrices are given
by

NE
AM= 2, (N, 6R;N)

e=1

27

NE
aN; oN; ON;
DM = Z l<3_’ (_ODxx 3;— 6D,, E*‘ q:N;

e=1 *
+ <—aﬁ, (—-ODYX a—N! - 6D, a—Nj+ qu-)>} (28)
ay dx dy
F,=F,;-F,, (29)
where
NB

+ <0Dyx a—+ 6D,, 5 q c)ny N; dB 30)
NE
Fui= 2 (®(x,y, 1), N{x, y)) 31)

e=1
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The line integral in (30) accounts for the different boundary
conditions. In the above equations, NE is the total number
of elements in the flow domain, NB is the number of
elements located on flow boundary B, B, represents the
sides of elements located on a boundary, and », and n, are
the directional cosines of the outward normal with respect to
the x and y coordinate axes, respectively. Equation (31)
represents salt removal by a well or other drainage facility
installed in the interior of the flow domain (in our study,
F,; = 0 for all i). Finally, notice that the time variable ¢ has
been left continuous in (26), thus resulting in a space-
discretized system of ordinary differential equations.

Initial and Boundary Conditions

Initial condition. The measured solute concentration dis-
tribution C° in the flow domain just before the start of the
simulation is taken as the initial condition:

c(x, y, 0) = C%x, y) (32)

Cauchy boundary conditions. Cauchy boundary condi-
tions are used to implement solute inflow boundary fluxes. In
our study the land surface represented by the segment GO
(Figure 1) acts as a Cauchy boundary during the infiltration
phase. If C, is the concentration of the incoming fluid, and if
a boundary side of length / connecting the kth and (k + 1)th
nodes is subjected to an inflow boundary flux with horizontal
and vertical components (n,q,C,) and (n,q,C,), respec-
tively, the line integral F; in (29) yields [Desai, 1979; Kamra,
1989]

t=0

Fk = Fk+ 1= % (qxnx + qynzy)ce (33)

Neumann boundary conditions. Neumann boundaries
are those along which the normal gradient of the concentra-
tion is prescribed. Neumann boundary conditions are im-
posed on flow-through boundaries with outflow from the
region, and on impervious boundaries. The latter case leads
to a zero value for the line integral in (30). In this study, sides
BA (the bottom layer; see Figure 1), OA (the plane of
symmetry), and BC and DG (streamlines) behave as imper-
vious boundaries and the corresponding entries in F; be-
come zero. The tile surface CD and the land surface GO
during evaporation are outflow boundaries. For these bound-
aries the normal gradient of the concentration becomes zero,
and the line integral in (30) reduces to

NBO

-3 | (gt qyn)NiN,C; dB = [GHC}
e=1 B,

(34)

where [G] is a NN X NN matrix to be added to coefficient
matrix [DM] in (26), and NBO is the number of boundary
elements along the outflow boundaries. The corresponding
entries of F; in (29) are again zero.

Dirichlet boundary conditions. Dirichlet boundary nodes
are those for which the concentration is prescribed. An
identity equation is generated for each node involved and
(29) does not need to be evaluated. Detailed descriptions on
how to implement this type of boundary condition can be
found elsewhere [e.g., Yeh and Ward, 1981]. No Dirichlet
boundaries were present for the flow domain of the tile-
drained soil-aquifer system shown in Figure 1. However,
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Dirichlet boundary conditions were implemented in an ex-
ample problem to compare model results with those obtained
with an analytical solution for two-dimensional solute trans-
port in groundwater.

SOLUTION OF THE VECTOR-MATRIX
DIFFERENTIAL EQUATION

For time-variant (transient) boundary conditions the solu-
tion of the inhomogeneous vector-matrix differential equa-
tion (26) is given by Bellman [1970] as

{C} =% + f " olH - NAM] YF(s)} ds (35)

0

where [H] is a NN X NN matrix equal to [AM] '[DM].
The coefficient matrix [DM] is asymmetric and contains the
effects of dispersion, convective transport, and outflow
through the boundaries, whereas {C°} represents the nodal
values of initial concentration. The term eV s referred to
as the matrix exponential and is a matrix of the same
dimensions as [H]. The eigenvalue-eigenvector method of
Euler is generally used to compute the matrix exponential.
In order to compute the matrix exponential, let us first
consider the homogeneous vector-matrix differential equa-
tion

{dCldt} = [H{C} (36)

All eigenvalues 1, and associated linearly independent
eigenvectors {Z*} of the matrix [H] must be first computed.
Because of its asymmetry, the matrix [H] has real as well as
complex eigenvalues. Let 7, and {Z¥} be the N real eigen-
values and associated linearly independent eigenvectors of
the matrix. Then the product

{C(y={Z"e™™ i=1,2,---, N (37)

represents N linearly independent real vector solutions of
the homogeneous differential equation (36).

Let 1; = a; + ib; be a complex eigenvalue of [H] with
eigenvector {Z/} = {ZY} + i{Z¥}. The complex solution
corresponding to this complex eigensystem gives rise to the
following two linearly independent real solutions, {C (1)}
and {Cy;(#)}, of (36) [Braun, 1978}

{C\{()} = {cos bH{Z"} — sin bp{Z¥}}e@"  (38)

{Coj(0)} = {sin b;{ZY} + cos bH{Z¥}}e@  (39)

The same real solutions are also obtained from the corre-
sponding complex conjugate eigensystem. This results in
NN linearly independent real solutions of (36). Using the
EISPACK computer package [Smith et al., 1976], the real
and imaginary parts of all eigenvalues of the real general
matrix [H] may be evaluated and the output of eigenvectors
stored in the matrix [Z]. If the ith eigenvalue 7; is real, the
ith column of matrix [Z] contains its eigenvector {Z}. If the
Jjth eigenvalue 7; is complex with positive imaginary part, the
jth and (j + 1)th columns of [Z] contain, respectively, the
real and imaginary parts of the associated eigenvector {Z/}.

Let [C(#)] be a square matrix whose columns are linearly
independent solutions {C ()}, {C5(D)}, -+, {Cyn(8)} of
(36). Such a matrix is called the fundamental matrix solution
[Braun, 1978]. The product of any fundamental matrix
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solution of (36) with its inverse at ¢+ = 0 yields the matrix

exponential ¢ Y. Hence
M = [cc) ™ (40)
Substituting ¢ = 0 in (37), (38) and (39) gives
[C(0)] = [Z] (41)

If the ith and jth eigenvalues are real and complex,
respectively, then the structure of [Z] and (37)-(39) enable
one to write the fundamental matrix [C(¢)] as the product of
{Z] and a tridiagonal matrix solution [@D]. The elements of
[@D] are given by

— t
OD;=e™
— — it
QD_/_] = QDJ+ 1,j+1~ e cos th

QDj,j+ 17 ea" sin bjt (42)

—= a;t
OD; ;= —e% sinbj

QD;=0 all other i, j

In these equations, i can assume any integer value from 1 to
NN and j from 1 to (NN - 1). Thus [QD] is of size (NN X
NN). In view of the preceding discussion and (40) and (41),
one finds

e = [Z][oD][2]"! 43)

Finally, the general solution (35) of the inhomogeneous
matrix-vector equation (26) for time-invariant boundary con-
ditions becomes

(€)= HH{C® + [DM]TYFY) - ([DMITYF})}  (44)

The matrix exponential evaluated from (43) at any ¢ is a
square matrix with real numbers. Its substitution in (44)
results in a column vector which represents the solute
concentration at all finite element nodes.

COMPARISON OF NUMERICAL AND
ANALYTICAL SOLUTIONS

In this section we give examples comparing the accuracy
of the numerical solution with results based on analytical
solutions derived by Bruch and Street [1967] and Cleary and
Ungs [1978] for solute transport in a two-dimensional sys-
tem. The saturated flow domain consists of a rectangular 240
X 60 m homogeneous isotropic medium with unidirectional
steady flow along the x axis. The initially solute-free medium
is subjected at time ¢ = 0 to a strip type Dirichlet boundary
condition (of concentration C, = 1000 mg/L) along the
inflow boundary (x = 0, 0 < y < 15 m). The mathematical
problem was formulated by Bruch and Street [1967] as
follows:

8¢

_—y —
¥y ayl ox

dac aZc

a_t—:DXXE+D (45a)

0=y=60;x>0;1t>0

c(0, y, 1) = 1000
c0,y,)=0

0=sy=<15

1S<y=60 (456)
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Fig. 2. Finite element discretization of the flow domain into 16
elements for comparison with an analytical solution.
dc
—(x,0,)=0 t>0 (45¢)
oy
dc
—(x,60,1)=0 t>0 (45d)
dy
|C(e, y, 1) is bounded (45¢)
cx,y,0=0 x>0, 0=y<60 (45f)
where v = ¢q,/0.

The flow region was divided into 16, 32, and 64 rectangular
elements. The finite element discretization of the flow do-
main into 16 elements is shown in Figure 2. For NE = 32
and 64, the grid system was doubled and quadrupled, respec-
tively. Numerical solutions using linear basis functions were
obtained for 0.25, 0.5, 1.0, 2.0, 3.0, and 4.0 years with
assumed constant values of the dispersion coefficients D,
and Dy, and the seepage velocity v. We point out that the
numerical solution is bounded by the rectangular region
shown in Figure 2, whereas the analytical solution holds for
a semiinfinite system subject to boundary condition (45¢)
which requires that the solution remain finite as x — «. The
numerical solution for this example was obtained by invok-
ing a first-type (Dirichlet) boundary condition of zero con-
centration along the outflow boundary at x = 240 m.

The L2 norm was taken as a measure of the error between
the analytical and numerical solutions. The L2 norm of a
function f(x, y) is defined as [Prenter, 1975]

171 = (Y, - Y )X, - X))

X Yy 12
{J f [fx, y)]* dy dx} (46)
X, Y,

where for our example f{x, y) represents the difference in
concentration computed with the analytical and numerical
solutions, and where X, X, and Y, Y, are the limits of the
flow domain in the x and y directions, respectively. Equation
(46) was numerically integrated by using Simpson’s quadra-
ture formula [Demidovich and Maron, 1976], which is appli-
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cable to equispaced nodes in the x and y directions of the
solution domain.

The L2 error norm as a function of time for the three finite
element discretizations (NE = 16, 32, and 64) is plotted in
Figures 3 and 4 for several combinations of D, , D,,, and v.
The results show that as the number of elements in the
domain increases, the difference between analytical and
numerical results decreases. Some oscillations are apparent
for the coarser grid (NE = 16) at relatively early times. All
discretizations show an increase in the error when time
progresses. This is a consequence of the fact that the
numerical and analytical solutions implement different exist
boundary conditions. For large times the finite domain (0 <
x < 240 m) can no longer accurately approximate the
semi-infinite domain (0 < x < ).

An important feature evident from Figures 3 and 4 is the
relative significance of the longitudinal dispersion coefficient
D, and the seepage velocity v in the numerical simulation.
The numerical error apparently decreases with increasing
value of D,, and decreasing v. Sensitivity analyses of
various model parameters (Figure 5) using the finer finite
element mesh (NE = 64) also showed that the error in the
numerical solution is relatively more sensitive to variations
in the seepage velocity than to variations in the longitudinal
and transverse dispersion coefficients. This sensitivity is
attributed to the fact that when linear basis functions are
used in the finite element approximation, the velocity field is
constant inside each element but discontinuous across the
boundary from one element to another. Discontinuities in
the velocity field often create problems for an accurate
representation of the convection term in the solute transport
equation.

Finally, Figure 6 compares numerically calculated solu-
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tions with results based on an analytical solution derived by
Cleary and Ungs [1978] and discussed further by Javandel et
al. [1984]. The solution applies to the same problem as above
(equations (45a)-(45f)), except that the lateral dimension y
is allowed to go to infinity, that is, boundary conditions (45¢
and 45d) are replaced by the condition dc(x, o, 1)/dy = 0

The numerical solution was obtained for an x-y fiow domain
of size 360 X 220 m assuming a Dirichlet boundary condition

of unit concentration over the strip {x = 0, |y| < 50 m}.
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(@) Dy (Dyy = 0.1 Dy, v = 0.1 m/d), (b) Dy, (Dy = 1 m?d,
v = 0.1 m/d), and (c) v (D, = 1 m?d, D, = 0.1 m¥d).
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Fig. 6. Comparison of numerical results with the analytical
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Figure 6 shows relative concentrations (C/C?) after r = 365
days, assuming v = 0.5 m/d, D,, = 5.0 m%*d, D,, = 0.5
m?/d, and Ry = 1, and using a discretization (NE = 64)
which is similar to that shown in Figure 2, except for the
slightly larger flow domain. The numerical and analytical
solutions results show close agreement, especially in view of
the relatively coarse finite element grid system used for the
numerical calculations.

SUMMARY AND CONCLUSIONS

A semidiscrete model for solute transport in a tile drained
soil-aquifer system has been developed. Water flow in the
unsaturated and saturated domains of the flow system was
assumed to be at steady state. The water flow velocity field
in the unsaturated zone was assumed to be vertically down-
ward and in magnitude equal to the net steady downward
flux of water. Water content distributions in the unsaturated
domain were obtained by numerically integrating Darcy’s
law and incorporating appropriate models for the unsatur-
ated hydraulic functions. The components of the Darcian
flux in the saturated domain were computed using analyses
by Kirkham [1958] and Toksoz and Kirkham [1971] for water
flow to drains in homogeneous and two-layered aquifers,
respectively. The semi-discrete solution of the transport
equation requires only a discretization of the spatial deriva-
tives (in this study using linear finite elements), whereas
exact-in-time solutions for the concentration ficld at any
future time were obtained without having to march through
the intermediate time intervals. The proposed model com-
pared favorably with results based on analytical solutions for
two-dimensional solute transport in groundwater. A prelim-
inary analysis of various model parameters showed that the
error in the numerical solution was relatively sensitive to
seepage velocity but fairly insensitive to variations in the
longitudinal and transverse dispersion coefficients.

Results of a field validation experiment of the composite
unsaturated-saturated solute transport model for tile-drained
soils are presented in part 2 [Kamra et al., this issue] of this
study.
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